学霸的军工科研系统 第782节(5 / 7)
  不过,这和常浩南本人,以及火炬集团都没什么直接关系。
非要说的话,也只能说是因为torch multiphysics这条鲶鱼的横空出世,让整个数值计算赛道都跟着活跃起来,从而催生了一系列前世压根没有,或者前世到很晚之后才出现的成果。
高精度格式就是其中之一。
在理论上,其优势在于当使用足够高精度的网格划分时,可以把计算误差控制在非常非常低的水平。
或者换句话说,如果不需要这么低的计算误差,可以大大节约网格数量。
以常浩南研究的水平集方法为例,当误差约束为1e-6时,适配四阶高精度格式对应的网格大小是适配二阶格式对应网格大小的32倍。
在三维情况下,网格量可以节约至1/30000。
在这种情况下,高精度格式本身所带来的额外复杂性基本可以忽略不计。
但是,每一种高精度格式的应用范围相当狭窄,且复杂程度很高,如果把每一种格式分别写进软件,那么代码数据量将会增加到一个令人难以接受的水平。
并且很多复杂的工程模型也根本不是一个格式就能处理的。
所以,目前正式版本的软件中,还没有将高精度格式纳入到更新计划当中。
而fr方法,如果真像作者本人所说的那样,则可以非常完美地解决这个问题。
只要由使用者自行设定通量修正函数就行了。
至于为什么这样一篇意义重大的论文会发到jcas上面……常浩南倒也大概能猜出来。
fr方法虽然解决了“单一方法应用范围狭窄”这个问题,但要想真正实现应用,还要跨过另外两个障碍——
↑返回顶部↑
			
			
			
		非要说的话,也只能说是因为torch multiphysics这条鲶鱼的横空出世,让整个数值计算赛道都跟着活跃起来,从而催生了一系列前世压根没有,或者前世到很晚之后才出现的成果。
高精度格式就是其中之一。
在理论上,其优势在于当使用足够高精度的网格划分时,可以把计算误差控制在非常非常低的水平。
或者换句话说,如果不需要这么低的计算误差,可以大大节约网格数量。
以常浩南研究的水平集方法为例,当误差约束为1e-6时,适配四阶高精度格式对应的网格大小是适配二阶格式对应网格大小的32倍。
在三维情况下,网格量可以节约至1/30000。
在这种情况下,高精度格式本身所带来的额外复杂性基本可以忽略不计。
但是,每一种高精度格式的应用范围相当狭窄,且复杂程度很高,如果把每一种格式分别写进软件,那么代码数据量将会增加到一个令人难以接受的水平。
并且很多复杂的工程模型也根本不是一个格式就能处理的。
所以,目前正式版本的软件中,还没有将高精度格式纳入到更新计划当中。
而fr方法,如果真像作者本人所说的那样,则可以非常完美地解决这个问题。
只要由使用者自行设定通量修正函数就行了。
至于为什么这样一篇意义重大的论文会发到jcas上面……常浩南倒也大概能猜出来。
fr方法虽然解决了“单一方法应用范围狭窄”这个问题,但要想真正实现应用,还要跨过另外两个障碍——
↑返回顶部↑