学霸的军工科研系统 第651节(3 / 7)
  想到这里,常浩南重新拿起电话,拨通了章亮平办公室的内线号码……
……
他交给章亮平的任务,显然不可能在一两天内就完成,因此,在处理完这个小小的突发情况之后,常浩南还是按计划回到学校,开始着手开发具体的流形学习算法。
相比于之前投稿给数学年刊的那篇纯理论论文,这才是他重点关注的方向。
国庆节之前,常浩南已经整理出了两个基本的算法思路,由姚梦娜和他分别选择一种继续研究。
虽然他现场构思出来的结果不可能一步到位就是最优解,但至少足够有代表性。
第一类是全局思路,在降维时将流形上邻近的点映射到低维空间中的邻近点,同时保证将流形上距离远的点映射到低维空间中远距离的点。
而第二类则是局部思路,只需要保证将流形上近距离的点映射到低维空间中的邻近点。
比较起来,前者更加直观(当然也只是相对直观),但计算复杂度很高,对于硬件水平和算法设计来说都有一定挑战。
局部思路更加抽象一些,且距离较远的点与点之间的对应关系不明确,但计算量比较小,似乎更适配眼下这会的计算机性能。
而这一次,是姚梦娜主动在几天后找到了常浩南。
不过,并不是因为前者已经按照全局思路构造出了算法。
或者说,确实搞出了算法,但发现走进了死胡同。
“常总,我用构造出来的等距映射算法对三维空间中的二维流形【t, s, x】进行了数据点生成优化测试。”
姚梦娜把几张纸放到常浩南的桌上:
↑返回顶部↑
			
			
			
		……
他交给章亮平的任务,显然不可能在一两天内就完成,因此,在处理完这个小小的突发情况之后,常浩南还是按计划回到学校,开始着手开发具体的流形学习算法。
相比于之前投稿给数学年刊的那篇纯理论论文,这才是他重点关注的方向。
国庆节之前,常浩南已经整理出了两个基本的算法思路,由姚梦娜和他分别选择一种继续研究。
虽然他现场构思出来的结果不可能一步到位就是最优解,但至少足够有代表性。
第一类是全局思路,在降维时将流形上邻近的点映射到低维空间中的邻近点,同时保证将流形上距离远的点映射到低维空间中远距离的点。
而第二类则是局部思路,只需要保证将流形上近距离的点映射到低维空间中的邻近点。
比较起来,前者更加直观(当然也只是相对直观),但计算复杂度很高,对于硬件水平和算法设计来说都有一定挑战。
局部思路更加抽象一些,且距离较远的点与点之间的对应关系不明确,但计算量比较小,似乎更适配眼下这会的计算机性能。
而这一次,是姚梦娜主动在几天后找到了常浩南。
不过,并不是因为前者已经按照全局思路构造出了算法。
或者说,确实搞出了算法,但发现走进了死胡同。
“常总,我用构造出来的等距映射算法对三维空间中的二维流形【t, s, x】进行了数据点生成优化测试。”
姚梦娜把几张纸放到常浩南的桌上:
↑返回顶部↑