第859章(3 / 4)
水木团队亦感疑惑,他们默默不语,保持关注。
紧接着,欧叶又画了一个直角三角形,边长分别是3/2、20/3、41/6。
这个三角形同样蕴含一个定理:存在一个边长为有理数而面积为5的直角三角形。
有理数是一个整数a和一个正整数b的比,这是中学数学的教学内容。
画两个中学生都懂的直角三角形,就能解答苏院士团队的疑惑?
不,并不能。
欧叶笔锋一转,在两个直角三角形的基础上进行延伸,她写出了一个代数证明式。
刷!
苏院士猛然起立,他的身子微微颤抖,他的双眼精光闪烁。
越简单,越复杂!
越复杂,越简单!
BSD猜想本身被深埋在极其高深的数学领域,但是,我们可以从一些最基础的数学原则出发,去解释BSD猜想。
无穷无尽的椭圆曲线有理点问题抽丝剥茧,竟然符合古希腊的经典几何设定!
两个直角三角形,一个代数证明式。
足矣!
↑返回顶部↑
紧接着,欧叶又画了一个直角三角形,边长分别是3/2、20/3、41/6。
这个三角形同样蕴含一个定理:存在一个边长为有理数而面积为5的直角三角形。
有理数是一个整数a和一个正整数b的比,这是中学数学的教学内容。
画两个中学生都懂的直角三角形,就能解答苏院士团队的疑惑?
不,并不能。
欧叶笔锋一转,在两个直角三角形的基础上进行延伸,她写出了一个代数证明式。
刷!
苏院士猛然起立,他的身子微微颤抖,他的双眼精光闪烁。
越简单,越复杂!
越复杂,越简单!
BSD猜想本身被深埋在极其高深的数学领域,但是,我们可以从一些最基础的数学原则出发,去解释BSD猜想。
无穷无尽的椭圆曲线有理点问题抽丝剥茧,竟然符合古希腊的经典几何设定!
两个直角三角形,一个代数证明式。
足矣!
↑返回顶部↑